Obsessive-compulsive disorder (OCD) is a chronic disease and psychosocial disorder that significantly reduces the quality of life of patients and affects their personal and social relationships. Therefore, early diagnosis of this disorder is of particular importance and has attracted the attention of researchers. In this research, new statistical differential features are used, which are suitable for EEG signals and have little computational load. Hilbert-Huang transform was applied to EEGs recorded from 26 OCD patients and 30 healthy subjects to extract instant amplitude and phase. Then, modified mean, variance, median, kurtosis and skewness were calculated from amplitude and phase data. Next, the difference of these statistical features between various pairs of EEG channels was calculated. Finally, different scenarios of feature classification were examined using the sparse nonnegative least squares classifier. The results showed that the modified mean feature calculated from the amplitude and phase of the interhemispheric channel pairs produces a high accuracy of 95.37%. The frontal lobe of the brain also created the most distinction between the two groups among other brain lobes by producing 90.52% accuracy. In addition, the features extracted from the frontal-parietal network produced the best classification accuracy (93.42%) compared to the other brain networks examined. The method proposed in this paper dramatically improves the accuracy of EEG classification of OCD patients from healthy individuals and produces much better results compared to previous machine learning techniques.
Read full abstract