Many researchers have recognized the long distance teleconnections between El Nino–Southern Oscillation (ENSO) events and some other processes in the global climate system happening in areas often very far from the equatorial zone of the Pacific Ocean. In this paper we investigate similar links between ENSO and extratropical processes taken in their whole set. For this goal we compute differences between the sea-level pressure and the near-surface air (sea surface) temperature global fields which correspond to either El Nino or La Nina events observed since the end of the XIX century and up to the beginning of the XXI century. As a result, we establish that an integrity exists of ENSO and the extratropical teleconnections such as North Atlantic Oscillation (NAO), Arctic Oscillation (AO), the Northern Hemisphere annular (NHA) mode as well as the Pacific–North American (PNA) pattern, and their analogs in the Southern Hemisphere in the interannual timescale. Named this integrity the Global Atmospheric Oscillation (GAO), we define two representative indices of GAO, and investigate the temporal dynamics of these indices. This investigation reveals that GAO’s extratropical components may be real irrespective of ENSO while the latter accompanies GAO in all cases. Moreover, in view of a general eastward propagation of the GAO as a spatial structure, some its extratropical components show changes of their features prior the El Nino (La Nina) begins to form. Using these features as fingerprints of the forthcoming evolution of ENSO, we define another GAO index for the El Nino prediction with the lead-time of about 1 year. At last, we establish that some of the CMIP5-models reproduce GAO reasonably well.
Read full abstract