Investigating the physical mechanism behind the formation of summer heat-drought weather (HDW) in the Yangtze River Basin (YRB) holds significant importance for predicting summer precipitation and temperature patterns in the region as well as disaster mitigation and prevention. This study focuses on spatiotemporal patterns of July–August (JA) HDW in the YRB from 1979 to 2022, which is linked partially to the preceding May–June (MJ) Antarctic Oscillation (AAO). Key findings are summarized as follows: (1) The MJ AAO displays a marked positive correlation with the JA HDW index (HDWI) in the southern part of upper YRB (UYRB), while showing a negative correlation in the area extending from the Han River to the western lower reaches of the YRB (LYRB); (2) The signal of MJ AAO persists into late JA through a specific pattern of Sea Surface Temperature anomalies in the Southern Ocean (SOSST). This, in turn, modulates the atmospheric circulation over East Asia; (3) The SST anomalies in the South Atlantic initiate Rossby waves that cross the equator, splitting into two branches. One branch propagates from the Somali-Tropical Indian Ocean, maintaining a negative-phased East Asia–Pacific (EAP) teleconnection pattern. This enhances the moisture flow from the Pacific towards the middle and lower reaches of the Yangtze River Basin (MYRB-LYRB). The other branch propagates northward, crossing the Somali region, and induces a positive geopotential height anomaly over Urals-West Asia. This reduces the southwesterlies towards the UYRB, thereby contributing to HDW variabilities in the region. (4) Partial Least Squares Regression (PLSR) demonstrated predictive capability for JA HDW in the YRB for 2022, based on Southern Ocean SST.