Objective. Cognitive impairment is one of the core symptoms of schizophrenia, with an emphasis on dysfunctional information processing. Sensory gating deficits have consistently been reported in schizophrenia, but the underlying physiological mechanism is not well-understood. We report the discovery and characterization of P50 dynamic brain connections based on microstate analysis. Approach. We identify five main microstates associated with the P50 response and the difference between the first and second click presentation (S1-S2-P50) in first-episode schizophrenia (FESZ) patients, ultra-high-risk individuals (UHR) and healthy controls (HCs). We used the signal segments composed of consecutive time points with the same microstate label to construct brain functional networks. Main results. The microstate with a prefrontal extreme location during the response to the S1 of P50 are statistically different in duration, occurrence and coverage among the FESZ, UHR and HC groups. In addition, a microstate with anterior–posterior orientation was found to be associated with S1-S2-P50 and its coverage was found to differ among the FESZ, UHR and HC groups. Source location of microstates showed that activated brain regions were mainly concentrated in the right temporal lobe. Furthermore, the connectivities between brain regions involved in P50 processing of HC were widely different from those of FESZ and UHR. Significance. Our results indicate that P50 suppression deficits in schizophrenia may be due to both aberrant baseline sensory perception and adaptation to repeated stimulus. Our findings provide new insight into the mechanisms of P50 suppression in the early stage of schizophrenia.
Read full abstract