Bee stings represent a public health subject, but the mechanisms involved in bee venom toxicity are not yet fully understood. To evaluate the reactions of adrenocortical cells, through which organisms respond to stress, two honeybee venom components: melittin (Mlt) and phospholipase A2 (PLA2) were tested as potential chemical stressors. Modifications were investigated with transmission electron microscopy and microanalysis. A single dose of Mlt (31 mg/kg) or PLA2 (9.3 mg/kg) was injected in rats of groups ML and PL; daily doses of Mlt (350 μg/kg) or PLA2 (105 μg/kg) were injected 30 days in rats of groups M30 and P30. Adrenocortical cells in ML group showed ultrastructural degenerative alterations of nuclei, endoplasmic reticulum, and mitochondria that exhibited lipid inclusions and mitochondrial cristae (MC) re-organized into mono- or multimembrane large vesicles, and whorls of membranes. Many MC were degenerated. In the M30 group, similar ultrastructural changes, but of lower amplitude were noted; lipid cytosolic droplets were heterogenous. MC diameters in Mlt groups (melittin treated groups) were significantly higher than in control (C) group. In PL group, mitochondria contained large lipid inclusions, vesicular MC of different sizes and multiple membranes, and debris, or whorl structures. In P30 group MC were tubular with increased diameters. In both PLA2 groups (PLA2 treated groups) MC were significantly larger than in C group. We concluded that Mlt and PLA2 were powerful stressors, toxic at the tested doses, cellular reactions concerning in all groups mainly mitochondria, but also other cellular compartments. Apart from degenerative regression of MC, the rearrangement of tubular MC occurred into one or multiple large multimembrane vesicular MC. Reactions to the high doses were more pronounced, with the highest amplitude in ML group, and the lowest in P30 group.
Read full abstract