This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian tectonic evolution in the eastern segment of the northern margin of the North China Craton (NCC). Zircon U-Pb dating results show that the Ximangzhang tonalite formed in the Late Silurian (425 ± 6 Ma); the basalt, andesite, and metamorphic olivine-bearing basalt in the Fangniugou volcanic rocks formed in the Middle Silurian (428 ± 6.6 Ma) and Middle Devonian (388.4 ± 3.9 Ma, and 384.1 ± 4.9 Ma). The Late Silurian tonalites are characterized by high SiO2 and Na2O and low K2O, MgO, FeOT, and TiO2, with an A/CNK ratio of 0.91–1.00, characteristic of calc-alkaline I-type granite. They are enriched in Rb, Ba, Th, U, and K, and depleted in Nb, Sr, P, and Ti, with positive εNd(t) (+0.35) and εHf(t) (+0.44 to +6.31) values, suggesting that they mainly originated from the partial melting of Meso–Neoproterozoic accretionary lower crustal material (basalt). The Middle Silurian basalts are characterized by low SiO2, P2O5, TiO2, and Na2O and high Al2O3, FeOT, and K2O, enriched in Rb, Ba, Th, U, and K and depleted in Nb, Ta, Sr, P, and Ti, indicative of shoshonitic basalt. The Late Silurian tonalites have positive εNd(t) (+4.91 to +6.18) values and primarily originated from depleted mantle magmas metasomatized by subduction fluids, supplemented by a small amount of subducted sediments and crustal materials. The Middle Devonian volcanic rocks exhibit low SiO2, TiO2, and Na2O and high K2O, and MgO, enriched in Rb, K, and LREEs and depleted in Nb, Ta, Sr, and HREEs, characteristic of shoshonitic volcanic rocks. Their εNd(t) (+2.11 to +3.77) and εHf(t) (+5.90 to +11.73) values are positive. These characteristics indicate that the Middle Devonian volcanic rocks primarily originated from depleted mantle magmas metasomatized by subduction fluids, with the addition of crustal materials or subducted sediments during their formation. Based on regional geological data, it is believed that the study area underwent the following evolutionary stages during the Silurian–Devonian period: (1) active continental margin stage of southward subduction of the Paleo–Asian Ocean (PAO) (443–419 Ma); (2) arc-continent collision stage (419–405 Ma); (3) post-collision extension stage (404–375 Ma); (4) active continental margin stage, with the PAO plate subducting southward once again (375–360 Ma).
Read full abstract