In this study, we introduce an electrochemical doping strategy aimed at manipulating the structure and composition of electrically conductive metal-organic frameworks (c-MOFs). Our methodology is exemplified through a representative c-MOF, Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene), synthesized into porous thin films supported by nanocellulose. While the c-MOF exhibits characteristic capacitive behavior in neutral electrolyte; it manifests redox behaviors in both acidic and alkaline electrolytes. Evidence indicates that the organic ligands within c-MOF undergo oxidation (p-doping) and reduction (n-doping) when exposed to specific electrochemical potentials in acidic and alkaline electrolyte, respectively. Interestingly, the p-doping process proves reversible, with the c-MOF structure remaining stable across cyclic p-doping/de-doping. In contrast, the n-doping is irreversible, leading to the gradual decomposition of the framework into inorganic species over a few cycles. Drawing on these findings, we showcase the versatile electrochemical applications of c-MOFs and their derived composites, encompassing electrochemical energy storage, electrocatalysis, and ultrafast actuation. This study provides profound insights into the doping of c-MOFs, offering a new avenue for modulating their chemical and electronic structure, thereby broadening their potential for diverse electrochemical applications.