The harmful impact of ozone on humans and the environment makes the development of economical, accurate, and efficient ozone monitoring technologies necessary. Therefore, in the present review, we critically discuss developments in the methods for the synthesis of ozone sensing materials such as metal oxides (Ni, Co, Pd, In, Cu, Zn, Fe, Sn, W, Ti and Mo), carbon nanotubes, organic compounds, perovskites, and quartz. Additionally, the recent advancements and innovations in ozone technology will be discussed. In this review, we focus on assembling ozone-sensing devices and developing related wireless communication, data transferring, and analyzing technologies together with satellite, airborne, and ground-based novel ozone-sensing strategies for monitoring the atmosphere, urban areas, and working environments. Furthermore, the developments in ozone-monitoring miniaturized devices technology will be considered. The effects of different factors, such as spatial-temporal variation, humidity, and calibration, on ozone measurements will also be discussed. It is anticipated that this review will bridge the knowledge gaps among materials chemists, engineers, and industry.
Read full abstract