Precisely designing asymmetric active centers and exploring their electronic regulation effects to prepare efficient bifunctional single-atom catalysts (SACs) is important for boosting the practical applications of zinc-air batteries (ZABs). Herein, an effective strategy has been developed by introducing an axial S atom to the FeN4 active center, simultaneously assisted by pyrolyzing the graphene oxide (GO) sheathed zeolitic-imidazolate framework-8 (ZIF8) composite and constructing a three-dimensional (3D) porous framework with abundant FeN4S1 moieties. This structure can accelerate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics owing to the modulated electronic redistribution and d-band center with a reduced energy barrier. The optimal S-Fe-NC/rGO showcases a lower voltage gap (ΔE) of 0.64 V between both the ORR and OER half-wave potentials at 10 mA cm-2, highlighting the excellent bifunctional activities. The assembled S-Fe-NC/rGO rechargeable liquid ZABs deliver a power density of 154.05 mW·cm-2 and a desirable durability of >900 h. More importantly, the corresponding flexible solid-state ZABs exhibit considerable foldability.
Read full abstract