This paper investigates the impact of fin width ( W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> s = 15, 20, and 25 nm) in a double-gate n-type FinFET on the performance and reliability of the device. Carrier conduction in the Si-fin body of FinFETs with various W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> s is also studied. The experimental results show that the threshold voltage and drain current of n-type FinFETs increases and decreases, respectively, as W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> is reduced. A thinner W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> FinFET exhibits greater immunity to short channel effects. In addition, according to the analysis results of low-frequency noise, the thinnest W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> FinFET possesses the largest bulk oxide trap density (N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BOT</sub> ) than that of a thicker W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> FinFET. Moreover, the noise of the thinnest W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> (15 nm) FinFET is largely dominated by the fluctuation of carrier number. In the hot-carrier injection (HCI) reliability test, the thinnest W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fin</sub> FinFET shows less performance degradation than those of the thicker ones. However, by removing the effect of the parasitic source/drain resistance, we believe that the volume inversion charged carriers flow through the entire thin Si-fin having a lower surface roughness and Coulomb scattering than those of thicker ones, which results in a higher carrier temperature and worsening of the reliability of the HCI.