Low-temperature direct bonding technique of semiconductor substrates has been developed to integrate dissimilar materials (e.g. Si, Ge, III-V) regardless of lattice and thermal expansion mismatches. Among the direct bonding techniques, a hydrophilic bonding method, which initiates a dehydration reaction between OH-terminated substrates, is commonly used because wafer-scale bonding can be fabricated under atmospheric conditions. Recently, our research group achieved direct bonding of wide-gap materials, including SiC, GaN, β-Ga2O3, and diamond substrates, by using this bonding method.The hydrophilic bonding of Si wafers has been practically applied for the fabrication of silicon-on-insulator substrates. In the bonding process, the Si substrates are typically irradiated with reactive ion etching using oxygen plasma, which efficiently generates OH groups on the surface. By contacting the substrates under atmospheric conditions, the activated surfaces can adhere to each other by hydrogen bonds across the OH groups. The annealing at ~200 °C causes the dehydration reaction and forms atomic bonds between the substrates, as shown in the following equation.Si-OH + HO-Si → Si-O-Si +H2OThe bonding process generates a sub-10-nm-thick SiOx layer at the bonding interface, which limits thermal and electrical conductance between the bonding substrates.Our research group demonstrated that the diamond substrates can be bonded with other semiconductor substrates (e.g. Si, InP, β-Ga2O3) by the hydrophilic bonding method. The pre-bonding treatment using oxygen plasma is not suitable for the diamond surface because it is easily etched by the strong oxidizing treatment. Meanwhile, the mild oxidizing treatment using H2SO4/H2O2 (i.e. piranha solution) and NH3/H2O2 (i.e. SC1) mixtures enables OH termination of the diamond substrate without a significant increase in the surface roughness. Figure A shows the photograph of the diamond substrate bonded on the Si substrate. At the Si/diamond and InP/diamond bonding interfaces, ~3-nm-thick SiOx and InPOx layers were observed by an electron microscope, respectively, as displayed in Figure B. These oxide layers were formed by the oxidizing treatment at the pre-bonding step.However, when β-Ga2O3 and diamond substrates were bonded, such an oxide intermediate layer was not observed at the bonding interface. This is because diamond never develops the oxide layer and β-Ga2O3 is an oxide material. As shown in Figure C, we achieved the direct bonding of monocrystalline β-Ga2O3 and diamond substrates with an amorphous intermediate layer thinner than 1 nm. As the intermediate layer was atomically thin, efficient electrical and thermal conductance across β-Ga2O3/diamond substrates was possible, as plotted in Figure D.Qiushi Kang et al. demonstrated that the hydrophilic bonding of the SiC substrate is possible by using oxygen plasma. This treatment develops the ~4-nm-thick SiOx layer on the SiC substrate, which possibly became a thermal and electrical barrier at the bonding interface. However, our research group revealed that the SiC substrate dipped into HF acid can form direct bonding with an atomically thin intermediate layer. It is known that the SiC surface is OH terminated after the removal of the native oxide layer by HF acid, unlike the Si substrate. We revealed that the HF-dipped SiC substrate can form direct bonding with the O2-plasma-activated β-Ga2O3 substrate through an intermediate layer as thin as 1 nm. as displayed in Figure E.About the GaN substrate, we have demonstrated that hydrophilic bonding with the Si substrate is possible using oxygen and nitrogen plasma activations. In addition, the GaN substrate dipped into H2SO4/H2O2 and NH3/H2O2 mixtures can also form direct bonding. The thickness of the GaOx layer at the GaN/Si bonding interface was approximately 1 nm.We believe the low-temperature direct bonding technique will contribute to future wide-bandgap semiconductor devices because it is possible to achieve efficient electrical and thermal conduction across dissimilar materials. Figure 1