Polydopamine (pDA) is a valuable material with wide-ranging potential applications. However, the complex and debated nature of dopamine polymerization complicates our understanding. Specifically, the impact of foreign substances, especially proteins, on pDA formation adds an additional layer of subtlety and complexity. This study delves into specific surface features of proteins that predominantly shape their impact on dopamine polymerization. Notably, the biotin-binding site emerges as a critical region responsible for the pronounced inhibitory effect of avidin and neutravidin on the dopamine polymerization process. The binding of biotin successfully mitigates these inhibitory effects. Moreover, several nucleases demonstrated a significant hindrance to pDA formation, with their impact substantially alleviated through the introduction of DNA. It is speculated that hydrogen bonding, electrostatic, cation-π, and/or hydrophobic interactions may underlie the binding between protein surfaces and diverse oligomeric intermediates formed by the oxidation products of dopamine. Additionally, we observed a noteworthy blocking effect on the dopamine polymerization reaction induced by erythropoietin (EPO), a glycoprotein hormone known for its role in stimulating red blood cell production and demonstrating neuroprotective effects. The inhibitory influence of EPO persisted even after deglycosylation. These findings not only advance our comprehension of the mechanisms underlying dopamine polymerization but also provide strategic insights for manipulating the reaction to tailor desired biomaterials.