Three novel coordination polymers (CPs), namely [Cu(μ-1κO,2κN-L)2]n (1), [Zn (μ-1κO,2κN-L)2(H2O)2]n (2) and [Cd (μ-1κOO’,2κN-L)2]n (3) [where HL = 4-(pyrimidin-5-ylcarbamoyl)benzoic acid], were synthesized and characterized by elemental analysis, ATR-IR, TGA, XPS and single-crystal X-ray diffraction. Despite having the same organic ligand, the various metal cations had an impact in the subsequent frameworks. Hirshfeld surface analysis was performed to investigate the intermolecular interactions and to examine the stability of the crystal structures of the three polymers. Their catalytic performances were screened for the peroxidative oxidation of Volatile Organic Compounds (VOCs), with toluene and p-xylene selected as model substrates. Tert-butyl hydroperoxide (t-BuOOH or TBHP) (aq. 70 %) was employed as the oxidant. The catalytic oxidation of toluene yielded benzyl alcohol, benzaldehyde and benzoic acid. The copper CP 1 exhibited the highest total yield for toluene oxidation, reaching approximately 36% in an aqueous medium. For p-xylene oxidation, tolualdehyde, methylbenzyl alcohol, and toluic acid were produced as the primary products, accompanied by minor ones. The experiments were conducted under diverse conditions, manipulating key parameters such as the choice of solvent (water or acetonitrile), type of oxidant (t-BuOOH or H2O2), the concentration of the oxidant and reaction temperature. In the presence of catalyst 1, a maximum total yield of ca. 80% was achieved for p-xylene oxidation.