AbstractThe results of an in situ investigation of the effect of four different bi‐ and trivalent cations (Fe(III), Cu(II), Mn(II) and Cr(III)) on the displacement velocity of individual growth steps on the (110) face of ammonium oxalate monohydrate crystals as a function of supersaturation are described and discussed. It was observed that: (1) at a particular temperature of pure solutions and solutions containing impurities, the velocity v of movement of the [110] growth steps is always greater than that of the [111] steps, (2) fluctuations in the velocity of individual growth steps occur in all solutions containing similar concentrations of different impurities, (3) the value of kinetic coefficient β for growth steps decreases with an increase in the concentration ci of Cu(II) impurity, but that for dissolution steps does not depend on ci; moreover, the value of kinetic coefficient β for growth steps is higher than that of dissolution steps, and (4) in the presence of Mn(II) and Cr(III) impurities, the kinetic coefficient β for dissolution steps is several times greater than that for growth steps. The results are explained from the standpoint of Kubota‐Mullin model of adsorption of impurities at kinks in the steps and the stability of dominating complexes present in solutions. Analysis of the results revealed that: (1) the effectiveness of different impurities in inhibiting growth increases in the order: Fe(III), Cu(II), Mn(II), and Cr(III), and this behavior is directly connected with the stability and chemical constitution of dominating complexes in saturated solutions, (2) fluctuations in the velocity of growth steps is associated with the effectiveness of an impurity for adsorption; the stronger the adsorption of an impurity, the higher is the fluctuation in step velocity v, and (3) depending on the nature of the impurity, the kinetic coefficient for the dissolution steps can remain unchanged or can be higher than that of the growth steps. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)