Etomidate (ETO), a hypnotic agent used for anesthesia induction, has been shown to induce long-lasting cognitive deficits. In the present study, we investigated whether ETO could activate the HIF1A/PGK1 pathway to antagonize oxidative damage in mice with postoperative cognitive dysfunction (POCD). A mouse model of ETO-mediated POCD was established, and pathological changes, apoptosis, and inflammatory factors in mouse hippocampal tissues were analyzed by HE staining, TUNEL assay, and ELISA. ETO was revealed to cause cognitive dysfunction in mice. Integrated database mining was conducted to screen out transcription factors that are both related to ETO and POCD. Hypoxia-inducible factor 1-alpha (HIF1A) was overexpressed in mice with POCD, and downregulation of HIF1A alleviated cognitive dysfunction in mice. HIF1A downregulation inhibited the transcription of phosphoglycerate kinase 1 (PGK1). Overexpression of PGK1 abated the alleviating effects of HIF1A knockdown on oxidative stress in mice with POCD. In addition, HIF1A activation of PGK1 induced oxidative stress and apoptosis in HT-22 cells while inhibiting cell viability. Taken together, we demonstrated that HIF1A activation of PGK1 induced oxidative stress in ETO-mediated POCD.