The reinforcement of drug-seeking motivation following drug withdrawal is recognized as a significant factor contributing to relapse. The ventral pallidum (VP) plays a crucial role in encoding and translating motivational aspects of reward. However, current research lacks a clear understanding of how the VP mediates drug-seeking motivation and the feedback modulation between the VP and the nucleus accumbens (NAc) following drug withdrawal. Therefore, utilizing a rat model of cocaine self-administration, we investigated the circuitry mechanisms underlying drug-seeking behavior post-drug withdrawal involving the NAc-VP pathway. Initially, we observed a significant enhancement in drug-seeking behavior 14 days after cocaine withdrawal. Subsequently, we identified the feedback mechanism through which the NAc-VP regulates this behavior. Immunofluorescence results indicated an increase in c-Fos expression levels in the ventral pallidum ventromedial (VPvm) and ventrolateral ventral pallidum (VPvl) following drug withdrawal. Calcium fiber photometry further elucidated that during the expression of high motivational drug-seeking behavior, there was a specific enhancement in VPvm neuronal activity, and retrograde tracing techniques suggested a weakened transmission function in the NAc-VPm pathway. Additionally, chemical genetic techniques demonstrated that inhibiting the activity of the NAc-VP pathway could increase the motivational level of drug-seeking behavior. These findings indicate that the reduced inhibitory function of the NAc-VP pathway following prolonged cocaine withdrawal forms the basis for heightened reactivity in VPvm neurons, thus regulating the expression of high motivational behavior triggered by drug-related cues. Our study results suggest that maintaining normal NAc-VP pathway functionality may decrease drug-seeking motivation post long-term drug withdrawal, offering new insights for interventions targeting relapse.