General anesthesia is thought to suppress the immune system and negatively affect postoperative infection and the long-term prognosis of cancer. However, the mechanism underlying immunosuppression induced by general anesthetics remains unclear. In this study, we focused on propofol, which is widely used for sedation under general anesthesia and intensive care and examined its effects on the T cell function and T cell-dependent immune responses. We found that propofol suppressed T cell glycolytic metabolism, differentiation into effector T cells, and cytokine production by effector T cells. CD8 T cells activated and differentiated into effector cells in the presence of propofol in vitro showed reduced antitumor activity. Furthermore, propofol treatment suppressed the increase in the number of antigen-specific CD8 T cells during Listeria infection. In contrast, the administration of propofol improved inflammatory conditions in mouse models of inflammatory diseases, such as OVA-induced allergic airway inflammation, hapten-induced contact dermatitis, and experimental allergic encephalomyelitis. These results suggest that propofol may reduce tumor and infectious immunity by suppressing the T cell function and T cell-dependent immune responses while improving the pathogenesis and prognosis of chronic inflammatory diseases by suppressing inflammation.
Read full abstract