Vibrio cholerae is a major human pathogen that can cause life-threatening acute diarrhea. V. cholerae are classified according to O-antigen polysaccharide outer membrane properties, where the serotypes O1 and O139 are strains that cause pandemics and epidemics while non-O1/non-O139 usually cause mild disease. The dynamic evolution of V. cholerae involves acquisition of new virulence factors through horizontal gene transfer and formerly nontoxigenic serogroups are increasingly being reported to cause severe forms of human disease.In this study we have serotyped one isolate (ST588-CPH) of imported V. cholerae from Vietnam to Denmark and performed whole genome sequencing to identify known virulence genes and furthermore studied the pattern of virulence in closely related pathogenic strains of V. cholerae.ST558-CPH was found to be a non-O1/non-O139 strain. Initial analysis from the whole genome sequencing gave a 96,6 % match to the O139-specific wbfZ gene, but in a second analysis with a higher identification threshold, the wbfZ gene was absent. We suggest a “de novo” display of a database misannotation, which explains the conflicting results. The MLST analysis revealed that the isolate belongs to the nontoxigenic non-O1/non-O139 sequence type ST558. ST558 has recently been reported as a sequence type forming a cluster of ST's that should be monitored, as it has shown to have virulence causing moderate to severe illness. Our analysis of virulence genes identified MakA, a recently discovered toxin, which seems to be generally present in both toxigenic and nontoxigenic strains.
Read full abstract