Ischemic injury is a primary contributor to the initiation of renal tubular epithelial cell damage in sickle cell disease (SCD). In this study, we investigated the effects of bilateral ischemia-reperfusion injury, which is a common type of acute kidney injury (AKI), in male and female genetic mouse model of SCD. Bilateral occlusion of both renal hila for 21 min led to a significantly higher detection of established serum markers of AKI (creatinine, KIM-1 and NGAL) compared to sham-operated male SCD mice. Severe damage to the outer medullary tubules was determined in the ischemia-reperfision injury (IRI)-treated SCD male mice. In female SCD mice with a longer ischemic time (23 min), the serum markers of AKI were not as highly elevated compared to their male counterparts, and the extent of outer medullary tubular injury was less severe. To assess the potential benefit in the use of hydroxyurea (50 mg/kg IP) following bilateral renal IRI, we observed that the serum markers of AKI and the outer medullary tubular damage were markedly improved compared to male SCD mice that were not treated with hydroxyurea. In this study, we confirmed that male SCD mice were more susceptible to increased tubular damage and a loss in renal function compared to female SCD mice, and that hydroxyurea may partially prevent the extent of tubular injury following severe ischemia-reperfusion injury in SCD.