In this work, we propose a novel way to flexibly engineer the waveguide dispersion by patterning the cladding of waveguide microresonators. Experimentally, we demonstrate silicon nitride waveguides with air-, oxide-, and SU-8 polymer-cladding layers and compare the corresponding waveguide dispersion. By integrating SU-8 polymer as the outer cladding layer, the waveguide dispersion can be tuned from −143 to −257 ps/nm/km. Through the simple, conventional polymer stripping process, we reconstruct the waveguide dispersion back to that of the original air-cladded device without significantly impacting the quality factor of resonators. This work provides the potential to design the waveguide dispersion in normal and anomalous regimes within an integrated photonic circuit.