Biomaterials with osteoinductivity are widely used for bone defect repair due to their unique structures and functions. Machine learning (ML) is pivotal in analyzing osteoinductivity and accelerating new material design. However, challenges include creating a comprehensive database of osteoinductive materials and dealing with low-quality, disparate data. As a standard for evaluating the osteoinductivity of biomaterials, ectopic ossification has been used. This paper compiles research findings from the past thirty years, resulting in a robust database validated by experts. To tackle issues of limited data samples, missing data, and high-dimensional sparsity, a data enhancement strategy is developed. This approach achieved an area under the curve (AUC) of 0.921, a precision of 0.839, and a recall of 0.833. Model interpretation identified key factors such as porosity, bone morphogenetic protein-2 (BMP-2), and hydroxyapatite (HA) proportion as crucial determinants of outcomes. Optimizing pore structure and material composition through partial dependence plot (PDP) analysis led to a new bone area ratio of 14.7 ± 7 % in animal experiments, surpassing the database average of 10.97 %. This highlights the significant potential of ML in the development and design of osteoinductive materials. Statement of significanceThis study leverages machine learning to analyze osteoinductive biomaterials, addressing challenges in database creation and data quality. Our data enhancement strategy significantly improved model performance. By optimizing pore structure and material composition, we increased new bone formation rates, showcasing the vast potential of machine learning in biomaterial design.
Read full abstract