Excessive chondrocyte death is a critical player in the process of osteoarthritis (OA). The present study was aimed to study the role of receptor-interacting serine/threonine kinase (RIP) 1-mediated signaling for programmed cell death in OA. In the present study, RIP1 protein expression was evaluated in mouse OA cartilage and cultured primary murine chondrocytes exposed to tumor necrosis factor-alpha (TNF-α). Protein expression involved in necroptosis and apoptosis and chondrocyte-derived extracellular matrix were examined. Inhibition of RIP1 was conducted using the RNAi technique and pharmacological inhibition. Western blot, immunohistochemistry, and immunofluorescence examination were applied. The protein presence of RIP1, but not RIP3, was increased in the mouse OA tissue and cultured chondrocytes exposed to TNF-α. Knockdown of RIP1 increased protein expression of collagen II and sex-determining region Y-box transcription factor 9, and reduced protein expression of matrix metallopeptidases 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5. Inhibition of RIP1 reduced the phosphorylated NF-κB signals, decreased cell apoptosis, and restored extracellular matrix expression in cultured chondrocytes. Both RNAi and pharmacological inhibition of RIP1 decelerated the progress of OA in mice. RIP1 regulates chondrocyte apoptosis through NF-κB signaling. Inhibition of RIP1 provides a novel therapeutic approach for OA therapy.
Read full abstract