Conservation of parity plays a fundamental role in our understanding of various quantum processes. However, it is difficult to observe in atomic and molecular processes induced by a strong laser field due to their multiphoton character and the large number of states involved. Here we report an effect of parity in strong-field Rydberg-state excitation (RSE) by comparing the RSE probabilities of the N2 molecule and its companion atom Ar, which has a similar ionization potential but opposite parity of its ground state. Experimentally, we observe an oscillatory structure as a function of intensity with a period of about 50 TW/cm2 in the ratio between the RSE yields of the two species, which can be reproduced by simulations using the time-dependent Schrödinger equation (TDSE). We analyze a quantum-mechanical model, which allows for interference of electrons captured in different spatial regions of the Rydberg-state wave function. In the intensity-dependent RSE yield, it results in peaks with alternating heights with a spacing of 25 TW/cm2 and at the same intensity for both species. However, due to the opposite parities of their ground states, pronounced RSE peaks in Ar correspond to less pronounced peaks in N2 and vice versa, which leads to the period of 50 TW/cm2 in their ratio. Our work reveals a novel parity-related interference effect in the coherent-capture picture of the RSE process in intense laser fields.
Read full abstract