There is a constant demand for higher equipment parameters, such as the pressure of a sealing medium and shaft rotation speed. However, as the parameters increase, it becomes more difficult to ensure hermetization efficiency. The rotor of a multi-stage machine rotates in non-contact seals. Seals’ parameters have a great influence on vibration characteristics. Non-contact seals are considered to be hydrostatodynamic supports that can effectively dampen rotor oscillations. The force coefficients of gap seals are determined by geometric and operational parameters. A purposeful choice of these parameters can influence the vibration state of the rotor. It is shown for the first time that the initially dynamically flexible rotor, in combination with properly designed seals, can become dynamically rigid. Analytical dependencies for the computation of the dynamic characteristics are obtained. The resulting equations make it possible to calculate the radial-angular vibrations of the rotor of a centrifugal machine in the seals and construct the amplitude–frequency characteristics. By purposefully changing the parameters of non-contact seals, an initially flexible rotor can be made rigid, and its vibration resistance increases. Due to this, the environmental safety of critical pumping equipment increases.
Read full abstract