A new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation is presented and orthogonality is obtained using the Sturm–Liouville approach. Conditions on the polynomial coefficients to have admissible partial differential equations are given. The general case is analyzed in detail, providing orthogonality weight function, three-term recurrence relations for the monic orthogonal polynomial solutions, as well as explicit form of these monic orthogonal polynomial solutions, which are solutions of an admissible and potentially self-adjoint linear second-order partial differential equation of hypergeometric type.
Read full abstract