U(N)⊗r⊗O(N)⊗q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$U(N)^{\\otimes r} \\otimes O(N)^{\\otimes q}$$\\end{document} invariants are constructed by contractions of complex tensors of order r+q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r+q$$\\end{document}, also denoted (r, q). These tensors transform under r fundamental representations of the unitary group U(N) and q fundamental representations of the orthogonal group O(N). Therefore, U(N)⊗r⊗O(N)⊗q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$U(N)^{\\otimes r} \\otimes O(N)^{\\otimes q}$$\\end{document} invariants are tensor model observables endowed with a tensor field of order (r, q). We enumerate these observables using group theoretic formulae, for tensor fields of arbitrary order (r, q). Inspecting lower-order cases reveals that, at order (1, 1), the number of invariants corresponds to a number of 2- or 4-ary necklaces that exhibit pattern avoidance, offering insights into enumerative combinatorics. For a general order (r, q), the counting can be interpreted as the partition function of a topological quantum field theory (TQFT) with the symmetric group serving as gauge group. We identify the 2-complex pertaining to the enumeration of the invariants, which in turn defines the TQFT, and establish a correspondence with countings associated with covers of diverse topologies. For r>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r>1$$\\end{document}, the number of invariants matches the number of (q-dependent) weighted equivalence classes of branched covers of the 2-sphere with r branched points. At r=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r=1$$\\end{document}, the counting maps to the enumeration of branched covers of the 2-sphere with q+3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q+3$$\\end{document} branched points. The formalism unveils a wide array of novel integer sequences that have not been previously documented. We also provide various codes for running computational experiments.
Read full abstract