In 2004, Mytella charruana (d'Orbigny, 1842) (Mollusca: Bivalvia: Mytilidae) became established along the coast of the southeastern United States (SE-US). Using mitochondrial DNA sequencing (cytochrome c oxidase subunit I), we compared genetic variation throughout its native range in South America to its invasive range in the SE-US. Samples from the SE-US were collected in 2006 and 2010 enabling a temporal comparison to evaluate possible genetic changes of the invasive population. We addressed two questions. First, what are the potential source populations (or geographic regions) for the SE-US invasion? Second, how has genetic diversity changed between the two sampling periods within the SE-US? We identified a total of 72 haplotypes, 64 of which were isolated to geographic sites and only 8 were shared among sites. The highly structured native range provides insight into the origin of invasive populations where our results suggest that the introduced SE-US population originated from multiple source populations with the Panama region as the primary source. Additionally, our results indicate that genetic composition of the non-native populations was unchanged between the two sampling periods. Mytella charruana exhibit a significant pattern of genetic structure among natural populations, owing to biogeographic barriers that limit natural dispersal, and an ability to persist in novel habitats, owing to a suite of life-history characters that favor survival under variable conditions. Overall, this study explains why M. charruana may become an increasing threat to locations founded by anthropogenic transportation.
Read full abstract