Mine excavation systems are usually dozens of kilometers long with varying geometry on a small scale (roughness and shape of the walls) and on a large scale (varying widths of the tunnels, turns, and crossings). In this article, the authors address the problem of analyzing laser scanning data from large mining structures that can be used for various purposes, with focus on ventilation simulations. Together with the quality of the measurement data (diverse point-cloud density, missing samples, holes induced by obstructions in the field of view, measurement noise), this creates problems that require multi-stage processing of the obtained data. The authors propose a robust methodology to process a single segmented section of the mining system. The presented approach focuses on obtaining a point cloud ready for application in the computational fluid dynamics (CFD) analysis of airflow with minimal need for additional manual corrections on the generated mesh model. This requires the point cloud to have evenly distributed points and reduced noise (together with removal of objects inside) while keeping the unique geometrical properties and shape of the scanned tunnels. Proposed methodology uses trajectory of the excavation either obtained during the measurements or by skeletonization process explained in the article. Cross-sections obtained on planes perpendicular to the trajectory are processed towards the equalization of point distribution, removing measurement noise, holes in the point cloud and objects inside the excavation. The effects of the proposed algorithm are validated by comparing the processed cloud with the original cloud and testing within the CFD environment. The algorithm proved high effectiveness in improving skewness rate of the obtained mesh and geometry mapping accuracy (standard deviation below 5 centimeters in cloud-to-mesh comparison).
Read full abstract