The cracked tooth syndrome poses a significant challenge in dentistry, thereafter untreated cases often lead to severe complications, such as pulpitis or complete tooth fracture, ultimately contributing to tooth loss. However, the conventional diagnostic methods to visualize microcracks in the tooth suffer from severe drawbacks, such as inaccurate cold stimulation, discomfort with probing, impractical staining techniques, and difficulty in distinguishing harmless craze lines from pathological cracks. To address this challenge, for the first time, we are proposing a novel approach by utilizing luminescent Ba2ZnWO6:Eu3+ (3 mol %), K+ (1 wt %) nanophosphor for improved imaging and diagnosis of cracked tooth syndrome. Herein, the double perovskite structured Ba2ZnWO6:Eu3+ (1–11 mol %), M+ (M+ = Na, K, and Li (1 wt %)) nanophosphors were synthesized via the sonochemical route. The photoluminescence emission spectra of the prepared Ba2ZnWO6:Eu3+ (1–11 mol %) nanophosphors displaying distinct peaks at 583, 595, 613, 662, and 720 nm, which ascribed to transitions from state 5D0 to 7FJ (J = 1–4) state of the Eu3+ ions, respectively. By adopting a strategic charge compensation mechanism, the enhancement in the luminescence emission intensity of about 1.5-fold was achieved after co-doping K+ (1 wt %) with Ba2ZnWO6:Eu3+ (3 mol %) nanophosphor. The photometric studies of the phosphors portray their orange-red emission with excellent quantum efficiency (82.52 %), and color purity (∼ 99 %). The emission intensity was sustained up to 73.71 % at 473 K, indicating excellent thermal stability of the phosphor. The in vitro cytotoxicity assessments of the optimized nanophosphor demonstrated its biocompatibility on normal non-malignant oral fibroblasts. The visualized microcracks in the tooth using optimized Ba2ZnWO6:Eu3+ (3 mol %), K+ (1 wt %) nanophosphor under UV excitation of UV 365 and 395 nm light revealed the orientation of microcracks, crack width, depth of the crack, and microcrack branching without any stain. The aforementioned results demonstrated that the proposed methodology paves the way for a new avenue in dental imaging technology with the potential to revolutionize and improve patient care outcomes.