AbstractThe linear dichroism (LD) has been measured for DNA molecules 239–164,000 base pairs long oriented in shear flow over a large range of velocity gradients (30–3,000 s −1) and ionic strengths (2–250 mM). At very low gradients, the degree of DNA orientation increases quadratically with the applied shear as predicted by the Zimm theory [J. Zimm, (1956) Chemical Physics, Vol. 24, p. 269]. At higher gradients, the orientation of fragments ≥ 7 kilobase pairs (kbp) increases linearly with increasing shear, whereas the orientation of fragments ≥ 15 kbp shows a more complicated dependence. In general, the orientation decreases with increasing ionic strength throughout the studied ionic strength interval, owing to a decrease in the persistence length of the DNA. The effect is most dramatic at ionic strengths below 10 mM, and is more pronounced for longer DNA fragments. For fragments ≥ 15 kbp and velocity gradients ≥ 100 s−1, the orientation can be adequately described by the empirical relation: LDr= –(k1‐G)/(k2 + G), where k1is a linear function of the square root of the ionic strength and k2 depends on the DNA contour length. Since the DNA persistence length can be represented as a linear function of the reciprocal square root of the ionic strength [D. Porschke, (1991) Biophysical Chemistry, Vol. 40, p. 169], extrapolation of the empirical relation provides information about the stiffness of the DNA fibers. © 1993 John Wiley & Sons, Inc.