Neuropathy target esterase (NTE), is a membrane protein located in the endoplasmic reticulum (ER). NTE has the activity of phospholipase B and can catalyze the deacylation of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to glycerylcholine (GPC). It is phosphorylated and aged by organophosphorus compounds (OPs), that induce delayed neuropathy in humans and sensitive animals. Our previous study has reported that the disruption of ER phospholipid homeostasis caused by the NTE inhibition may contribute to the initiation of the organophosphate-induced delayed neurotoxicity (OPIDN), while it is unknown how the disturbed phospholipid homeostasis initiates OPIDN. It is difficult to change phospholipids in in vivo experiments. Therefore, an in vitro model is urgently needed to explain the role of phospholipid homeostasis disorders in OPIDN. In this study, we altered the expression of NTE in SK-N-SH cells and determined its phospholipid component by using HPLC-MS. Our results showed that the changes of NTE affected the levels of PC, sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylserine (PS), lysophosphatidylserine (LPS), phosphatidyl-glycerol (PG), and phosphatidylinositol (PI). Our results were consistent with the in vivo results. Furthermore, our findings indicate that the SK-N-SH cell model is a significantly useful method for the further research on how the changes of phospholipid homeostasis initiate the OPIDN, which is easier than the in vivo experiments in practice.
Read full abstract