The Triassic lacustrine organic-rich shale (LORS) in Member 7 of the Yanchang Formation (Carnian stage) in the southern Ordos Basin is relatively well developed. Additionally, its organic matter abundance, lake biomass and biodiversity, exceed the maximum values of the other strata deposited during the same period. Apatite is one of the most important minerals and is closely related to biological activities. However, the types and genesis of the continental sedimentary apatite and its significance to shale oil are not clear. Here, the stratigraphy, petrology, and sedimentology of the phosphorus-bearing rock series in the Ma Quan section are studied and its sedimentary environment and phosphorus formation are discussed. The current research shows that apatite in the study area can be divided into three categories: collophanite, bone fossils, and spherical microfossils. These three types of biogenic “phosphorus” products provide effective records of the transformation of the biological substances into sedimentary organic matter. There are two main formation mechanisms: the direct action of organisms and the interaction between the organisms. Bone fossils and spherical microfossils are formed by the direct action of organisms, while collophanite is formed by the indirect action of organisms. The phosphatization methods of the organisms mainly include “coating”, “replacement”, and “filling”, and the presence of a ubiquitous phosphate filler potentially reflects a sufficient phosphate supply. Apatite also is highly important for the development of organic matter in oil shale. First, it changes the productivity conditions. Second, the apatite in the shell of spherical microfossils has a certain protective effect on the organic matter in the inner cavity. In the current study, the geological processes of collophanite deposition and mineralization are explained, an important basis for prospecting phosphate resources is provided, and a new field for the study of the organic matter enrichment mechanism of source rocks is established. At the same time, the process of lake biogenic phosphorus formation provides evidence from the continental deposits in the eastern margin of the Tethys region for exploring deep global changes.
Read full abstract