Reactive oxygen species, especially hydroxyl radicals (OH), exert a distinguished role in the transformation of contaminants, and their in-situ generation attracts wide attentions in environmental and geochemical areas. The present work explored the potential formation of OH during the interactions between iron-containing clay minerals and environmentally prevalent organic acids in dark environments. The results demonstrated that the accumulative OH concentrations were related to the solution pH, the types of clay minerals, and the nature of organic acid species. At pH 5.5, 1.2– 15.2 times of OH were generated from the reduction of Na-nontronite-2 (Na-NAu-2) compared with other clay minerals in the presence of ascorbic acid (AA) at 144 h. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses indicated that Fe(III) was reduced to Fe(II) by AA during OH formation. Meanwhile, chemical probe tests coupled with quenching experiments confirmed the generation of H2O2 and superoxide radical (O2–), which participated in the formation of OH. The produced OH/O2– can transform 68.4%, 86.4%, and 50.1% of phenol, p-nitrophenol, and 2,4-dichlorophenol within 168 h in AA-Na-NAu-2 suspension, respectively. This work provides valuable insights into OH production in the mutual interaction between organic acids and iron-bearing clays, which is helpful for the development of a new method for removing organic pollutants from contaminated water and soil environments.
Read full abstract