A 10-year study (1997–2006) was conducted to evaluate reproduction and health of aquatic birds in the Carson River Basin of northwestern Nevada (on the U.S. Environmental Protection Agency Natural Priorities List) due to high mercury (Hg) concentrations from past mining activities. This part of the study evaluated physiological associations with blood Hg in young snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax), and organ biochemistry and histopathological effects in snowy egrets on Lahontan Reservoir (LR) from the period 2002–2006. LR snowy egret geometric mean total Hg concentrations (µg/g ww) ranged from 1.5 to 4.8 for blood, 2.4 to 3.1 liver, 1.8 to 2.5 kidneys, 1.7 to 2.4 brain, and 20.5 to 36.4 feathers over these years. For night-herons, mean Hg for blood ranged from 1.6 to 7.4. Significant positive correlations were found between total Hg in blood and five plasma enzyme activities of snowy egrets suggesting hepatic stress. Histopathological findings revealed vacuolar changes in hepatocytes in LR snowy egrets as well as correlation of increased liver inflammation with increasing blood and tissue Hg. Hepatic oxidative effects were manifested by decreased hepatic total thiol concentration and glutathione reductase activity and elevated hepatic thiobarbituric acid-reactive subatances (TBARS), a measure of lipid peroxidation. However, other hepatic changes indicated compensatory mechanisms in response to oxidative stress, including decreased oxidized glutathione (GSSG) concentration and decreased ratio of GSSG to reduced glutathione. In young black-crowned night-herons, fewer correlations were apparent. In both species, positive correlations between blood total Hg and plasma uric acid and inorganic phosphorus were suggestive of renal stress, which was supported by histopathological findings. Both oxidative effects and adaptive responses to oxidative stress were apparent in kidneys and brain. Vacuolar change and inflammation in peripheral nerves were found to correlate with blood and tissue Hg. Hg-associated effects related to the immune system included alterations in specific white blood cells and lymphoid depletion in the bursa that were correlated with blood and tissue Hg. When the number of plasma variables that differed between young snowy egrets from the LR site and the reference site were compared between wet and drought years, over twice as many variables were affected during drought years. This resulted in many more variables correlating with blood total Hg during dry than during wet years, suggesting the combination of drought and Hg was more stressful than Hg alone. Drought may have exacerbated Hg-related effects as reported previously for overall productivity. This relationship was not evident in black-crowned night-herons, although data were more limited.
Read full abstract