Several experiments have measured a deviation in B → D(∗) semileptonic decays, that point to new physics at the TeV scale violating lepton flavor universality. A scalar leptoquark S1, with a suitable structure of couplings in flavor space, is known to be able to solve this anomaly modifying b→cτν¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ b\ o c\ au \\overline{\ u} $$\\end{document}. In the context of composite Higgs models, we consider a theory containing H and S1 as Nambu-Goldstone bosons (NGBs) of a new strongly interacting sector, with ordinary resonances at a scale O10\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}(10) $$\\end{document} TeV. Assuming anarchic partial compositeness of the Standard Model (SM) fermions we calculate the potential of the NGBs that is dominated by the fermions of the third generation, we compute RD∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {R}_{D^{\\left(\\ast \\right)}} $$\\end{document} and estimate the corrections to flavor observables by the presence of S1. We find that the SM spectrum and mS1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_{S_1} $$\\end{document} ∼ TeV can be obtained with a NGB decay constant of order ∼ 5 TeV. We obtain a robust correlation between the main corrections to RD∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {R}_{D^{\\left(\\ast \\right)}} $$\\end{document}, BK∗νν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {B}_{K^{\\left(\\ast \\right)}\ u \ u} $$\\end{document} and gτ/gμ, that leads to a sever bound on RD∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {R}_{D^{\\left(\\ast \\right)}} $$\\end{document}, roughly 2σ below the experimental value. Besides the bounds on the flavor observables gτW\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {g}_{\ au}^W $$\\end{document}, BR(τ → μγ) and ∆mBs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\Delta {m}_{B_s} $$\\end{document} are saturated, with the first one requiring a coupling between resonances g* ≲ 2, whereas the second one demands mS1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_{S_1} $$\\end{document} ≳ 1.7 TeV, up to corrections of O1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}(1) $$\\end{document}.
Read full abstract