In this work, we introduce some new results on the Lyapunov inequality, uniqueness and multiplicity results of nontrivial solutions of the nonlinear fractional Sturm-Liouville problems \t\t\t{D0+q(p(t)u′(t))+Λ(t)f(u(t))=0,1<q≤2,t∈(0,1),αu(0)−βp(0)u′(0)=0,γu(1)+δp(1)u′(1)=0,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\textstyle\\begin{cases} D_{0^{+}}^{q} (p(t)u'(t))+\\Lambda(t)f(u(t))=0,\\quad1 < q\\leq2, t\\in (0,1), \\\\ \\alpha u(0)-\\beta p(0)u'(0)=0,\\qquad\\gamma u(1)+\\delta p(1)u'(1)=0, \\end{cases} $$\\end{document} where α, β, γ, δ are constants satisfying 0neq vertbetagamma+alphagammaint_{0}^{1}frac{1}{p(tau)},dtau +alpha deltavert<+infty, p(cdot) is positive and continuous on [0,1]. In addition, some existence results are given for the problem \t\t\t{D0+q(p(t)u′(t))+Λ(t)f(u(t),λ)=0,1<q≤2,t∈(0,1),αu(0)−βp(0)u′(0)=0,γu(1)+δp(1)u′(1)=0,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\textstyle\\begin{cases} D_{0^{+}}^{q} (p(t)u'(t))+\\Lambda(t)f(u(t),\\lambda)=0,\\quad1 < q\\leq2, t\\in (0,1), \\\\ \\alpha u(0)-\\beta p(0)u'(0)=0,\\qquad\\gamma u(1)+\\delta p(1)u'(1)=0, \\end{cases} $$\\end{document} where lambdageq0 is a parameter. The proof is based on the fixed point theorems and the Leray-Schauder nonlinear alternative for single-valued maps.
Read full abstract