This paper deals with the existence results of the infinite system of tempered fractional BVPs Drϱ,λ0Rzj(r)+ψj(r,z(r))=0,0<r<1,zj(0)=0,0RDrm,λzj(0)=0,b1zj(1)+b20RDrm,λzj(1)=0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $$\\begin{aligned}& {}^{\\mathtt{R}}_{0}\\mathrm{D}_{\\mathrm{r}}^{\\varrho , \\uplambda} \\mathtt{z}_{\\mathtt{j}}(\\mathrm{r})+\\psi _{\\mathtt{j}}\\bigl(\\mathrm{r}, \\mathtt{z}(\\mathrm{r})\\bigr)=0,\\quad 0< \\mathrm{r}< 1, \\\\& \\mathtt{z}_{\\mathtt{j}}(0)=0,\\qquad {}^{\\mathtt{R}}_{0} \\mathrm{D}_{ \\mathrm{r}}^{\\mathtt{m}, \\uplambda} \\mathtt{z}_{\\mathtt{j}}(0)=0, \\\\& \\mathtt{b}_{1} \\mathtt{z}_{\\mathtt{j}}(1)+\\mathtt{b}_{2} {}^{ \\mathtt{R}}_{0}\\mathrm{D}_{\\mathrm{r}}^{\\mathtt{m}, \\uplambda} \\mathtt{z}_{\\mathtt{j}}(1)=0, \\end{aligned}$$ \\end{document} where j∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathtt{j}\\in \\mathbb{N}$\\end{document}, 2<ϱ≤3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$2<\\varrho \\le 3$\\end{document}, 1<m≤2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$1<\\mathtt{m}\\le 2$\\end{document}, by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.
Read full abstract