Freshwater darters belonging to the orangethroat darter species complex, or Ceasia, are widely distributed in the Central and Southern United States, with ranges that span both glaciated and unglaciated regions. Up to 15 species have been recognized in the complex, with one, Etheostoma spectabile, having a widespread northern distribution and another, Etheostoma pulchellum, having a sizeable southern distribution. The other species in the complex have much more restricted distributions in unglaciated regions of the Central Highlands. We sampled 384 darters from 52 sites covering much of the range of Ceasia and evaluated patterns of genetic diversity, genetic structure, and pre- and post-glacial patterns of range contraction and expansion. We anticipated finding much stronger signals of genetic differentiation and diversification in unglaciated regions, given the higher species diversity and levels of endemism reported there. Surprisingly, microsatellite genotyping revealed two well-differentiated genetic clusters of E. spectabile in samples from glaciated regions, one confined to the Illinois River basin and another found in the Wabash drainage and Great Lakes tributaries. This suggests that there was expansion from two isolated glacial refugia, with little subsequent post-glacial gene flow. Fish collected from throughout the unglaciated region were less genetically differentiated. Fish assigned to Etheostoma burri and Etheostoma uniporum based on collection sites and morphological characters were not genetically differentiated from E. spectabile samples from the region. Hybridization and introgression occurring in the Central Highlands may confound genetic delineation of species in this region of high endemism and diversity.