15-oxo-eicosatetraenoic acid (15-oxo-ETE), is a product of arachidonic acid (AA) metabolism in the 15-lipoxygenase-1 (15-LOX-1) pathway. 15-oxo-ETE was overproduced in the nasal polyps of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD). In this study we investigated the systemic biosynthesis of 15-oxo-ETE and leukotriene E4 (LTE4) and assessed their diagnostic value to identify patients with N-ERD. The study included 64 patients with N-ERD, 59 asthmatics who tolerated aspirin well (ATA), and 51 healthy controls. A thorough clinical characteristics of asthmatics included computed tomography of paranasal sinuses. Plasma and urinary 15-oxo-ETE levels, and urinary LTE4 excretion were measured using high-performance liquid chromatography and tandem mass spectrometry. Repeatability and precision of the measurements were tested. Plasma 15-oxo-ETE levels were the highest in N-ERD (p < .001). A receiver operator characteristic (ROC) revealed that 15-oxo-ETE had certain sensitivity (64.06% in plasma, or 88.24% in urine) for N-ERD discrimination, while the specificity was rather limited. Modeling of variables allowed to construct the Aspirin Hypersensitivity Diagnostic Index (AHDI) based on urinary LTE4-to-15-oxo-ETE excretion corrected for sex and the Lund-Mackay score of chronic rhinosinusitis. AHDI outperformed single measurements in discrimination of N-ERD among asthmatics with an area under ROC curve of 0.889, sensitivity of 81.97%, specificity of 87.23%, and accuracy of 86.87%. We confirmed 15-oxo-ETE as a second to cysteinyl leukotrienes biomarker of N-ERD. An index based on these eicosanoids corrected for sex and Lund-Mackay score has a similar diagnostic value as gold standard oral aspirin challenge in the studied group of patients with asthma.
Read full abstract