Optofluidic dye lasers integrated into microfluidic chips are promising miniature coherent light sources for biosensing. However, achieving the accurate and efficient tuning of lasers remains challenging. This study introduces a novel pneumatically tunable optofluidic distributed feedback (DFB) dye laser in a multilayer microfluidic chip. The dye laser device integrates microfluidic channels, grating structures, and vacuum chambers. A second-order DFB grating configuration is utilized to ensure single-mode lasing. The application of vacuum pressure to the chambers stretches the soft grating layer, enabling the sensitive tuning of the lasing wavelength at a high resolution of 0.25 nm within a 7.84 nm range. The precise control of pressure and laser tuning is achieved through an electronic regulator. Additionally, the integrated microfluidic channels and optimized waveguide structure facilitate efficient dye excitation, resulting in a low pump threshold of 164 nJ/pulse. This pneumatically tunable optofluidic DFB laser, with its high-resolution wavelength tuning range, offers new possibilities for the development of integrated portable devices for biosensing and spectroscopy.