Decomposition-based strategies, such as analytical target cascading (ATC), are often employed in design optimization of complex systems. Achieving convergence and computational efficiency in the coordination strategy that solves the partitioned problem is a key challenge. A new convergent strategy is proposed for ATC that coordinates interactions among subproblems using sequential linearizations. The linearity of subproblems is maintained using infinity norms to measure deviations between targets and responses. A subproblem suspension strategy is used to suspend temporarily inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. An individual subproblem trust region method is introduced for faster convergence. The proposed strategy is intended for use in design optimization problems where sequential linearizations are typically effective, such as problems with extensive monotonicities, a large number of constraints relative to variables, and propagation of probabilities with normal distributions. Experiments with test problems show that, relative to standard ATC coordination, the number of subproblem evaluations is reduced considerably while the solution accuracy depends on the degree of monotonicity and nonlinearity.
Read full abstract