The symmetric wireless network has been expected to be a revolutionary technology for mobile communications. Due to the limited resources of the microbase stations in the wireless network, the way to jointly optimize resource allocation, traffic throughput, latency, and other key performances is a hot research issue. In this paper, we introduce a joint optimization algorithm for improving the performance and balancing the traffic load of the wireless network. For the optimal traffic routing scheme, we transfer the problem to a mixed mathematical programming model. The model contains multiple traffic constraints and a single joint objective; the objective of the joint optimization are data transmission latency, energy consumption of wireless microbase stations, and throughput of links. Moreover, in order to approximately solve the optimization problem, we propose an efficient heuristic traffic transmission and migration scheme with load balancing, called an adaptive data traffic control scheme. The main idea of the proposed scheme is to split the traffic of overloaded microbase stations and links in the symmetric wireless network, so as to achieve load balancing and reduce the energy consumption of microbase stations. At last, the evaluations and simulations verify the proposed algorithm can efficiently optimize the energy allocation of microbase stations, and the network lifetime is increased to 210 rounds. Meanwhile, the network latency is reduced to 2–3 ms, and the network throughput is increased to 1000 Mb in our simulation environment. The constructed traffic control system for the traffic engineering-based wireless network in this paper can serve the intelligent system in the future.
Read full abstract