Oleaginous forests provide diverse ecosystem services, including timber, seed yield (a vital feedstock for biodiesel production), and substantial carbon savings. These carbon savings encompass carbon sequestration related to timber growth and carbon savings resulting from substituting fossil fuel with biodiesel. However, oleaginous forests are vulnerable to seed wasp attacks (disservice), which significantly threaten both seed yield and carbon savings. Using an integrated ecological-economic model that includes Faustmann's Land Expectation Value model and a pest damage control model, we aim to understand the intricate relationship among multiple ecosystem services and disservices of oleaginous forests. The results reveal four distinct phases contingent on varying pesticide application rates: the pesticide under-use phase, substitution phase, complementary phase, and over-use phase. Notably, a potential avenue to minimize pest damage is identified during the complementary phase by reducing the optimal rotation age at the expense of decreased carbon sequestration and bioenergy provision, posing a challenge to climate change mitigation. These findings have implications for formulating policies to manage conflicting ecosystem services of energy forests, offering valuable insights into the intersection of sustainable forest management and climate policy.
Read full abstract