The distance from the virtual image to the human eye is an important factor in measuring the comfort of a head-mounted display (HMD). However, accurately measuring their distance is challenging due to the dynamic changes in virtual presence and distance. In this paper, we proposed a virtual image distance measurement prototype based on a variable-focus liquid lens and derived a virtual image distance calculation model. We built a variable-focus liquid lens experimental platform to verify the method’s correctness. In addition, we proposed an improved optimization algorithm that can efficiently and accurately search for the optimal focal length corresponding to the maximum sharpness moment of the virtual image within the focal length value space. Verified in an experimental scene of 0.5 m to 3.5 m, we observed that the error between the object image distance and the virtual image distance at the same focal length is about 5 cm. The proposed virtual image distance measurement method can accurately measure the distance value of the virtual image in the HMD. This method can be widely used in virtual and augmented reality, especially in the task of constructing realistic scenes.
Read full abstract