Abstract In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of the approximation in the spectral norm and $\ell ^2$ norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.
Read full abstract