Rare-earth ion doped crystals possess stable solid state physicochemical properties and long optical coherence time and spin coherence time, thus showing important development prospect in quantum information science and technology area. Investigations on macroscopic bulk rare-earth single crystals have obtained many promising results, especially in the field of optical quantum memory. With the rapid development of quantum information science, a variety of new functions or multifunctional integrations are found in rare earth crystal systems, such as on chip quantum storage, microwave to optical frequency conversion, scalable quantum single photon sources, and quantum logic gates. As a result, beyond the macroscopic bulk rare-earth single crystals, micro/nano-scale rare-earth crystals have received much attention in recent years and they are regarded as promising candidates in highly integrated hybrid quantum systems and miniaturized quantum devices. Moreover, wet chemical method synthesized micro/nano-scale rare-earth crystals have lower growth difficulty and more flexible manipulation in volume, shape and composition. Therefore, exploring high-performance micro/nano-scale rare-earth crystals and precisely manipulating their quantum states have become one of the important directions in today’s quantum information science and technology research. In this review, we first briefly introduce the basic concepts and high resolution spectroscopic techniques that are commonly used in rare earth ion doped crystals for quantum information science and technologies, such as hole burning technique and photon echo technique. Then we summarize comprehensively recent research status and development trends of rare earth ion doped polycrystalline nanoparticles, thin films, single crystal based micro systems, and some other micro/nano-scale rare earth platforms in terms of material fabrication, quantum coherence property, dephasing mechanisms, and also quantum device explorations. The latest research advances in quantum information applications such as quantum storage, quantum frequency conversion, quantum single photon sources and quantum logic gates are given. Finally, we discuss the possible optimization directions and strategies to improve the component design, material synthesis and quantum performance of micro/nano-scale rare earth crystals and their related quantum devices. This review highlights that the micro/nano-scale rare earth crystals may offer many new possibilities for designing quantum light-matter interfaces, thus are promising quantum systems to develop scalable and integrated quantum devices in the future.
Read full abstract