Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
Read full abstract