A combined digital linearization and channel estimation scheme is proposed and experimentally demonstrated for short-reach intensity-modulation and direct-detection (IM/DD) optical Fast-OFDM systems. Known 2PAM-Fast-OFDM sequences are used for training a memoryless polynomial based adaptive post-distorter and for FFT-based channel estimation in IM/DD 4PAM-Fast-OFDM systems. The 2PAM signals are transmitted only over the odd SCs of the training sequences. With the combined compensation scheme, significant BER improvements are achieved for 10- and 22-km length 12.5 Gbit/s SMF links. Compared with a conventional IM/DD Fast-OFDM, the receiver sensitivity of the proposed IM/DD Fast-OFDM system is improved by about 3 dB at a bit error ratio (BER) of 10–3, after 22-km SMF transmission. In addition, the experimental results for different bias voltages and under strong filtering effects show that the proposed compensation approach can deal with some degree of MZM bias drift and can be applied for realistic wideband optical Fast-OFDM systems.
Read full abstract