Optical orbital angular momentum (OAM) mode multiplexing has emerged as a promising technique for boosting communication capacity. However, most existing studies have concentrated on channel (de)multiplexing, overlooking the critical aspect of channel routing. This challenge involves the reallocation of multiplexed OAM modes across both spatial and temporal domains—a vital step for developing versatile communication networks. To address this gap, we introduce a novel approach based on the time evolution of OAM modes, utilizing the orthogonal conversion and diffractive modulation capabilities of unitary transformations. This approach facilitates high-dimensional orthogonal transformations of OAM mode vectors, altering both the propagation direction and the spatial location. Using Fresnel diffraction matrices as unitary operators, it manipulates the spatial locations of light beams during transmission, breaking the propagation invariance and enabling temporal evolution. As a demonstration, we have experimentally implemented the deep routing of four OAM modes within two distinct time sequences. Achieving an average diffraction efficiency above 78.31%, we have successfully deep-routed 4.69 Tbit·s−1 quadrature phase-shift keying (QPSK) signals carried by four multiplexed OAM channels, with a bit error rate below 10–6. These results underscore the efficacy of our routing strategy and its promising prospects for practical applications.