Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen and the major cause of healthcare-associated infections, which are increasingly complicated by the prevalence of highly invasive and hyper-virulent K. pneumoniae strains, necessitating the development of alternative strategies for combatting infections caused by this bacterium. In this study, we successfully constructed a fusion antigen called KP-Ag1, comprising three antigens (GlnH, FimA, and KPN_00466) that were previously identified through reverse vaccinology. Immunization with KP-Ag1 formulated with Al(OH)3 adjuvant elicited robust humoral and cellular immune response in mice, and conferred protective immunity in a murine model of K. pneumoniae lung infection. Further analysis of serum IgG subtypes from mice immunized with KP-Ag1 revealed a predominant IgG1 response, indicating that KP-Ag1 predominantly induces a Th2-biased immune response. Additionally, opsonophagocytic killing assay suggested that humoral immune responses play a pivotal role in mediating protection conferred by KP-Ag1. Moreover, KP-Ag1 was found to promote the activation and maturation of BMDCs in vitro, which is essential for subsequent efficient antigen presentation. More importantly, vaccination with KP-Ag1 demonstrated cross-protective efficacy against clinical isolates of K. pneumoniae varying in serotypes, antibiotic resistance, and virulence profiles. Therefore, KP-Ag1 holds promise as a candidate for K. pneumoniae vaccine development.
Read full abstract